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Abstract

This work deals with the dynamics of a vibrating piezoelectric disc, which creates, under specific vibrating
conditions, an air squeeze film that is able to levitate a freely suspended object.

In such problems, the coupling effects between the various components affect the overall dynamical
behaviour of the combined system. For complex systems, which combine elastic and electro-static effects
together with compressible fluid effects, the coupled equations are often dealt with separately to avoid
modelling and computational complexity. In this paper, the importance of handling such systems in a
coupled manner is advocated by means of numerical and experimental examples. A coupled model is
derived in this work making use of a concise numerical solver to allow for this investigation under several
conditions. The piezoelectric part of the structure is modelled by finite elements while the squeeze film
phenomenon is represented by means of finite-difference equations, to model a variant of the Reynolds
equation. The numerical model was verified during each step in the development of the numerical algorithm
and indeed showed good agreement with existing publications, but once the components were combined, it
was found that several phenomena were misrepresented in the past due to the neglect of the coupling
effects. Several physical insights are brought from the simulation and investigation of the numerical results.
In the last part, the importance of coupled analysis is emphasized by introducing an experimental
investigation of the dynamical behaviour while conducting a comparison with numerical simulation results.
From this comparison, the limitations of state-of-the-art modelling procedures are clarified.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The current tendency towards multi-disciplinary applications introduces problems with a high
level of complexity. This complexity often requires an integration of several problems from
different disciplines. Such integration takes place, for example, when trying to model the
dynamical behaviour of a system consisting of elastic effects, electro-static effects and
compressible flow effects. Integration is indeed essential because of the coupling effects that
may have a significant influence on the overall behaviour. In previous papers dealing with squeeze
film and air bearings that are created by the normal vibration between two vibrating surfaces (e.g.,
Refs. [1,2]) the analysis was carried out for the case where the mean clearance between the surfaces
was pre-determined. In other words, the vibrating surface was brought (numerically) close to a
fixed surface to achieve a prescribed clearance. When trying to model an applicative problem such
as squeeze bearings or mass levitation, where the clearance cannot be fixed but is determined by
the equilibrium of forces, the analysis appearing in the literature may prove inaccurate.
Furthermore, in this case, some of the commonly used non-dimensional parameters, e.g., the
squeeze number, cannot be solely used to determine the operating regime.

In addition, the dynamical analysis of vibrating piezoelectric discs, (appearing in Refs. [3,4] as
well as in other references), does not incorporate the effect of interacting external loads with other
components in a system. It appears that the fluid forces in a squeeze film may prove to be
significant to an extent that the deformation shapes are affected.

The present paper includes two parts: numerical analysis and experimental study. The first part
begins by presenting the investigated system, which was modelled and simulated, and by
illustrating the numerical scheme of the solver. Later some special relations between the elastic
deformations and electric fields are highlighted. The squeeze film phenomenon existing in the air
layer is briefly described and finite-difference equations representing the dynamics of the fluid
layer are derived. The last part of the numerical analysis presents and analyzes simulated results of
the pressure distribution, the stability of equilibrium and some observations concerning the
squeeze film behaviour. The second part of this paper begins by presenting the experimental
system and the design considerations. Comparisons of experimental and numerical results are
introduced. The response and dynamical behaviours of the floating disc are compared.

2. Numerical analysis

In this section, the equations of motion are derived part by part leading to a combined model
that incorporates the fully coupled structure.

2.1. System description

Before introducing the numerical scheme of the solver and discussing the modelling
considerations, the system is schematically presented.

The investigated system consists of a piezoelectric disc made of PZT-5A with polarization in the
axial direction. Electrical excitation is provided by two electrodes located on the top and bottom
parts of the disc and are assumed to be equi-potential. The disc is clamped at the centre of the
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Fig. 1. Schematic layout of the system.

bottom base. A rigid mass with the same diameter as the piezoelectric disc is placed concentrically
on top of the upper surface of the piezoelectric disc, while the system is surrounded by
atmospheric air at standard conditions. Applying a sinusoidal voltage on the electrodes gives rise
to harmonic deformation of the piezoelectric disc at the excitation frequency according to a model
to be outlined in Section 2.3. At frequencies in the range of several kHz, the squeeze film
phenomenon becomes significant to an extent that between the vibrating piezoelectric disc and the
rigid mass, a layer of load-carrying mean pressure is created. This load-carrying air film, that is
the result of normal vibratory motion between the surfaces, is able to levitate the free mass
completely. Fig. 1 illustrates the schematic layout of the system.

2.2. Numerical scheme

In order to determine the overall system characteristics, the squeeze film equation together with
its coupling to the piezoelectric disc and the floating disc are considered. These equations are
coupled by the displacement of the floating disc relative to the vibrating piezoelectric disc and by
the force exerted by the gas squeeze film on both discs. The force exerted on the floating disc
changes intermittently the vertical position of the floating mass, while on the piezoelectric disc, the
force exerted by the gas film gives rise to a static and dynamic deflection that influences the
operating deformation shapes of the vibrating piezoelectric disc and consequently all the other
state variables. Fig. 2 illustrates the numerical scheme of the solver algorithm where complete
coupling is considered.

The numerical algorithm consists of three major parts. The first part derives the mass and
stiffness matrices of the piezoelectric disc by means of a finite element approximation, and sets the
electrical boundary conditions (the amplitude of a sinusoidal voltage). The initial conditions
consist of the position and velocity of the free mass relative to the piezoelectric disc and the initial
pressure distribution in the gas film. The second part of the algorithm consists of the finite-
difference-based calculation of the time derivatives leading to the Reynolds equation. The
Reynolds equation requires the instantaneous clearance between the discs that is obtained from
vertical position of the floating disc and the deformation of the upper surface of the piezoelectric
disc. The third part of the algorithm is an adaptive time integration of the dynamic equations
where the coupled state-space model is integrated in time. Appendix A shows a solution for a non-
linear problem in space and time using a finite-difference method in space and an adaptive
integration in time.
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Fig. 2. Numerical scheme of the solver algorithm.

2.3. The dynamics of a piezoelectric structure

As mentioned in the description of the numerical solver, the dynamics of the piezoelectric disc
are formulated by means of a finite element approximation of the piezoelectric constitutive laws.

The constitutive relations given by IEEE Std. [5] for piezoelectric media describe the coupling
between the mechanical and the electrical part of the system using FEinstein’s summation
convention:

E
Tij = CiijSk[ — ek,'jEk,

D; = ey Su + &5 Ex, (1)

where Tj; is the mechanical stress tensor, Sy, is the mechanical strain tensor, D; is the electric flux
density, Ej is the electric field vector, Cgkz 1s the elastic stiffness constant tensor at constant electric
field, ej; is the piezoelectric constant tensor and 35{ is the dielectric constant tensor at constant
strain.

By using Hamilton’s principle for non-conservative systems as done in Ref. [6], the dynamic
equations of a piezoelectric structure could be directly extracted from the variational formulation.
The equations of motion in matrix form can be rewritten in the so-called [H]-form [7]. This form
simplifies the intermediate calculations considerably and is performed under the assumptions that
the surface charge is different from zero only on the electrodes and the electric potential is set to

zero on the grounded reference electrode. The matrix form of the dynamic equations may be
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where vector {u} is the mechanical displacement degrees of freedom (d.o.f.), vector {¢,} is the
electrical potential d.o.f. on the potential electrode, M,,, is the mass matrix, H,, is the condensed
mechanical stiffness matrix, Hyg, is the condensed piezoelectric couphng matrix, Hy ¢ is the
condensed dielectric stiffness matrix, Fg is the surface traction and QS) is the surface electric
charge on the potential electrode.

Under a harmonic excitation voltage ¢, = ¢ sin(w?) and in the absence of electrical inertia, the
equations of motion can be written as

[Huu - szuu]{UO} = {FO} - [Hu(p]{(l)o} (3)

written as [7]

Eq. (3), contains a static reduction of the electric d.o.f., and is thus of a dimension compatible
with the mechanical d.o.f.

The eigenvalue problem of the piezoelectric structure is calculated for the case when there are
no external excitations on the structure, which means in the present case that there are no surface
tractions and no potential voltage on the electrodes. This case is equivalent to a short-circuit case.

Therefore with Fy = 0 and ¢, = 0 the eigenvalue problem takes the form:

[H.J[¥] = [M..J[¥][°], (4)

where [Q?] contains the eigenvalues on its diagonal and [¥] is the eigenvectors matrix.

The system dealt with here is axisymmetric; therefore a two-dimensional element was chosen for
the finite elements analysis. The piezoelectric disc was modelled by a four-node plane element
having three d.o.f. at each node: electric potential, radial displacement and axial displacement.
Isoparametric bilinear interpolation functions and Gauss quadrature integration have been used.

In order to verify the correctness of the finite element model that was developed, a comparison
with the numerical results obtained by Gou et al. [3] was made and the results are presented in
Appendix B.

2.3.1. Special relations between the elastic and electric effects

Examination of the mode shapes of the piezoelectric disc, reveals that for extensional
mechanical mode shapes (symmetrical around the r-axis in Fig. 3), the electric field in the disc’s
cross section is anti-symmetric around the r-axis as can be seen in Fig. 3(b), while for flexural
mechanical mode shapes, the electric field in the disc’s cross-section is symmetric around the r-axis
as seen in Fig. 3(a). Indeed, it was mentioned by Gou et al. [3] that only extensional modes could
be excited electrically by a voltage applied across electrodes on the top and bottom surfaces of the
disc. The electric field distribution, as was described above, provides an explanation to this fact as
a symmetrical electric field distribution around the r-axis means that there is no potential gradient
between the top and bottom surfaces of the disk and thus the flexural modes are completely de-
coupled from the applied voltage across the electrodes.



246 A. Minikes, I. Bucher | Journal of Sound and Vibration 263 (2003) 241-268

(b)

Fig. 3. (a) Two examples of flexural mechanical modes and symmetrical electric potential field along the radial axis; (b)
two examples of extensional mechanical modes and the anti-symmetrical electric potential field along the radial axis.

2.3.2. Frequency response functions

Assuming that a harmonically varying voltage at a frequency  excites the piezoelectric
element, the components of the mechanical displacement may then be calculated by the mode
superposition method [3]. By introducing the transformation {uy} = [\y]{zo} into Eq. (3) and pre-
multiplying by [T, where [] is the mass-normalized modal matrix, the frequency response
function can be expressed by

N T T T
r=1

(@ + i, 0% — )

where {z,} is a vector of modal displacements, {\s}, is the eigenvector related to mode r, and Nps O
are the damping loss and the structure’s natural frequency for mode r, respectively. Numerical
results showing the frequency response of a piezoelectric disc are presented in Appendix B.

2.4. The squeeze film effect

An oscillating motion in the normal direction between parallel surfaces can generate an air film
with a mean pressure higher than the surrounding. This load-carrying phenomenon arises from
the fact that a viscous flow cannot be instantaneously squeezed, therefore providing a cushioning
effect and the film equilibrium is established though a balance between viscous flow forces and
compressibility forces.

The squeeze film effect occurs, for standard air, when the oscillations are at high frequencies (in
the kHz range) with sub-millimetre amplitudes. Under these conditions, the viscous forces (flow
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resistance) will be high enough to introduce compressibility effects, i.e., the flow will be
compressed and expanded periodically.

Reynolds equation is the differential equation governing the pressure distribution in the squeeze
film. This equation can be derived from the Navier—Stokes equation and the continuity equation
under the following assumptions: (1) Newtonian flow and air acts as an ideal gas, (2) laminar and
isothermal flow, (3) smooth surfaces, (4) the gas film thickness is much smaller than the bearing
dimensions so that the velocity gradients in the radial and tangential direction are negligible
compared with the velocity gradients in the normal direction.

When fluid inertia and dilatational stresses in the fluid are negligible, the pressure in a thin,
isothermal gas film is governed by a non-linear partial differential equation commonly addressed
as Reynolds equation [8]:

O (1p ) —uf2%D 2 [y
a}(”a})‘w{z 5 +6x,- [ph(V: Vi)]}, ()

where £ is the film thickness, p is the fluid pressure, p is the fluid viscosity and V;, V! are the
velocities of the surfaces in the x; direction.
By introducing the non-dimensional parameters

p=l r=T m=-" r_ou (7)

" Pa ro ho

the normalized Reynolds equation in polar co-ordinates for an ideal gas, flowing between two
parallel circular discs becomes

1 0 oP O(PH)
——(PRH’ =) =0—
R8R< 8R> 77T ®
where the squeeze number ¢ is defined as
12uwr
o =120 )
Pah

and w is the squeeze motion vibration frequency; p, is the atmospheric pressure, r( is the disc
radius and /4y is the initial clearance between discs.

The pressure at the disc edge is the atmospheric pressure and because of symmetry, there is no
pressure gradient at the disc’s centre. Therefore the boundary conditions are

oP
PR=1,T)=1, —(R=0,T)=0. 1
(R=1,1)=1, S5(R=0,1)=0 (10)
In the initial state, the pressure between the discs is atmospheric:
PR, T=0)=1. (11)

The total film force exerted on the disc as function of time is given by

i

2
Paly

1
W(T) = :27r/ R(P — 1)dR. (12)
0
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By application of a finite-difference scheme in space, the Reynolds equation takes the form of a set
of ordinary normalized differential equations in time:

OP\ _ _ Pi(OH\ PH}(0P\ ., (0P ?
\or)~ ~m\or).” R \or), 7 \GR

i

oP\ (oH , (6P
b, (aR)l.(aR) JHEH, (aRz); (13)

where H = H(R, T) is the clearance between the discs as a function of radial co-ordinate and time.
The boundary conditions for the finite-difference scheme are given by Eq. (10).

2.5. Formulating the coupled dynamics

The equations of motion of the system, with consideration of the coupling effects, can be
described by a state-space formulation as shown below.

As the floating mass is assumed rigid, the motion of the floating disc in the axial direction can
be described by one d.o.f. (designated by X). The normalized equation of motion of the floating
disk can be written as

*X .
—=X=F-G. 14
T (14)
With the non-dimensional parameters
x i g
X=— F=——— G=—— T=owo,
ho Wlh()(/)2 w2h0 @

where /A is the initial clearance between discs, m represents the mass of the floating disk, w is the
excitation frequency, f; is the total force exerted by the squeeze film on the disc (taken from
Eq. (12)), and ¢ stands for acceleration due to gravity.

In order to express the equation of motion of the piezoelectric disc in state space, Eq. (3) is
written in the time domain as

[Mu )i} + [Cu]{in} + [HuJ{uy = {f} — [Hyo]{). (15)

The damping matrix added to the equation is defined as [C,,] = [\TI] 7T[2§w,,] [\TJTI in the
physical co-ordinates or a diagonal matrix [2¢w,] in modal co-ordinates. The motivation for such
formulation is clarified below. In this study, a damping factor of & = 0.01 was used.

As the thickness of the squeeze film is much smaller compared to the radius of the discs, the
pressure gradient in the axial direction is negligible, allowing one to describe the pressure
distribution in the radial direction by a one-dimensional grid in a finite-difference model. In order
to simplify the meshing procedure, the fluid grid is chosen to be identical to the grid of the upper
nodal points of the piezoelectric disc’s cross-section.

The distributed pressure gives rise to a force vector {f} exerted by the air film on the
piezoelectric disc. These equivalent forces are applied to the nodes of the upper surface of the
piezoelectric disc and their compressive effect can be approximated by

{f}; = —2nP,ry(Ri(P; — DAR), AR =R — R (16)
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In order to achieve better numerical accuracy of the solution, it is essential to normalize the
equations of motion, therefore as Eqs. (13) and (14) are already normalized, a similar procedure is
applied to Eq. (15) as well. By introducing the transformation {u} = [\]{z} into Eq. (15) and pre-

multiplying by [W]", where [\] is the mass-normalized modal matrix, Eq. (15) can be expressed by

{Z} + 2$QNUZ} + [QUZ} = {F/} — (Fy}, (17)
where {z} is a vector of generalized co-ordinates, [Qf] is a matrix having the undamped
eigenvalues on its diagonal, and the non-dimensional parameters of this equation are

Az} LRt [ [H,, ] ()}
{Z} - h_O, {Ft} - hoa)2 ) w2—h[:)

By defining the state-space variables vector q = {X XPZ Z}T, where X, X are scalars
representing the position and velocity of the floating disc, respectively, P is the pressure vector
in the squeeze film along the radial axis, and Z,Z are the modal displacements and velocities
vectors of the nodes of piezoelectric disc, respectively. The state-space formulation takes the form:

{F(/,} =

X 70 1 0 0 0 (X 0
X 0 0 1 0 0 X F-G
Pl = Eq. (13) P+ 0 . (18)
7 0 0 0 0 (1] 7 0
z) Lo o o0 @] —2¢lj\z) \F-F,)

The electrical force {F,}, resulting from the induced voltage on the electrodes, obtains its final
form by inserting ¢ = ¢, sin(w?) into Eq. (18). The non-linear coupling takes place within F;
where the effect of pressure variation that depends on the mechanical displacement plays an
important role. Eq. (18) shows that the coupling of the system’s component equations, takes place
in the applied forces (F and F;) and in the finite-difference expressions represented by Eq. (13). As
explained earlier, the definition of the gap between the discs H = H(R, T) in Eq. (13) is determined
by the displacements of the freely floating mass, and the position of the upper surface of the
piezoelectric disc.

2.6. Simulations results

In practice, the deformations of one thick piezoelectric disc are not sufficient, in terms of
amplitude of vibration, to produce the conditions that will create a squeeze film with a sufficient
load-carrying capacity. In order to obtain larger vibration amplitudes, a useful design that
increases the vibration amplitudes to a sufficient amount is discussed later on in this work in the
experimental study. For the sake of simplicity at this stage, an impractically large voltage is
numerically applied to the electrodes in the range of several kV and the behaviour of the
piezoelectric material is still considered to be linear.

The piezoelectric disc’s model is divided into a (5 x 25) nodal points (4 x 24 elements); and the
pressure finite-difference scheme makes use of the same nodal points in the radial direction thus
creating a grid of 25 points. This mesh provided the necessary accuracy for the excited
wavelengths.
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The physical parameters of the system under which the numerical simulation was carried out
are summarized in Table 1.

2.6.1. Pressure distribution

Examination of the influence of the boundaries on the flow cycle indicates that, during the
compression stage, the increase in pressure causes outward flow, but at the same time, the
clearance decreases, allowing only little airflow to occur. On the other hand, during the
decompression stage, while the pressure drops, the flow changes its direction becoming an inward
flow. At this stage, the clearance between the discs increases, allowing a larger flow rate to enter at
a relatively slow velocity.

The numerical algorithm enables one to calculate the pressure distribution between the discs for
a given radius as a function of time. Observing the normalized pressure distribution, as shown in
Fig. 4, reveals that near the edges of the disc, the mean pressure does not exceed the value 1.0 (i.e.,

Table 1

The physical parameters under which the numerical simulation was carried out

Parameters of the system Parameters of the interfering force applied on the mass
Piezoelectric disc diameter 40 mm Applied force 3N
Piezoelectric disc thickness 10 mm Initial time 33.7ms
Excitation voltage 10kV Duration 3.7ms
Excitation frequency 8700 Hz

Floating mass 0.1kg

Initial clearance 100 um

1.4

kil 1.2
¢ )
2 14 - 11.1 Pressure
2 EEEEESEEEEEEEEEEEEEE

0.8~ y

0.6-L

: 1
Time _
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Fig. 4. Pressure distribution (normalized by atmospheric pressure) between the discs as a function of the radial location
and time.
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normalized atmospheric pressure). Furthermore, the fluid near the edges barely experiences any
compression or decompression; therefore no cushioning effect takes place in this region. As can be
seen in Fig. 4, the squeeze film phenomenon takes place close to the centre of the discs, where the
pressure cycle is changing from compression to decompression while the mean pressure is above
the atmospheric pressure.

2.6.2. System’s equilibrium stability

In order to examine, the dynamical behaviour of the system (Fig. 1) after reaching steady state
equilibrium, an interfering force is numerically applied to the free mass for a short period of time.
The force was applied downward, pushing the free mass towards the vibrating piezoelectric disc.
The physical parameters of the interfering force, under which the numerical simulation was
carried out, are summarized in Table 1.

Fig. 5(a) shows the clearance between the discs as a function of time. It is seen that under the
conditions given in Table 1, after approximately 30 ms, the system reaches equilibrium where the
mean clearance is near 70 pm. At this point in time, an external force of 3 N was applied to the
floating disc for a period of 3.7ms. There is an immediate decrease in the gap, which remains
smaller, as long as the floating disc is subjected to the force. When the interfering force is
terminated, the floating mass returns to the prior gap of equilibrium, which indicates that this
equilibrium is indeed stable. Fig. 5(b) shows the change in the force exerted by the squeeze film
(Eq. (12)) on the surfaces as a function of time. It is clearly seen that when the interfering force is
applied downwards on the floating disc, the force exerted by the squeeze film increases, resisting
the interfering force. The mean force exerted by the squeeze film when no interfering force exists is
equal to the gravitational force of the floating disc.

2.6.3. Case of a fixed upper mass

In previous papers dealing with squeeze film air bearing created by normal vibration between two
surfaces [1], the analysis treated the case where the mean clearance between the surfaces was pre-
determined. In other words, the vibrating surface was brought close to a fixed surface to a required
clearance. In the case of the floating mass, this assumption obviously does not generally apply.

11 70
10 60
=13 50F
8
E
g’ £
|
3 s i
o
4
3,
2.
i i ; i ; ’ : ; 20 ; ; ; ; ; ; :
0 001 002 003 004 005 006 007 008 0 001 002 003 004 005 006 007 008
(a) Time [sec] (b) Time [sec]

Fig. 5. Numerical simulation of the system behaviour under an interfering force applied downward on the floating disc:
(a) the clearance as a function of time; (b) the force exerted by the squeeze film as a function of time.
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When examining the behaviour of the air film undergoing periodic cycles of compression and
decompression, with the assumption of prescribed mean clearance between the surfaces, one can
observe that at relatively low frequencies or relatively large gaps (small squeeze number o), the
force exerted by the film, Eq. (12), is proportional to the squeeze velocity, which means that the
film acts as a viscous damper. While, at relatively high frequencies or relatively small gaps (large
squeeze number o), the force exerted by the film is proportional to the squeeze clearance rather
than the squeeze velocity. For such conditions, the film becomes virtually non-dissipative,
showing a non-linear spring action. In practice, the film represents a combination of “‘viscous
damping” and ‘“‘spring” actions [1].

Fig. 6 shows numerical results (normalized) of the force exerted by the film and the periodic
cycle of the clearance for a case where the floating mass is clamped, allowing one determine the
mean clearance. Case (a) shows numerical results under conditions where the squeeze number o is
small. It is seen that, the phase between the force and the clearance is nearly 7/2 which indicates
that the force is proportional to the squeeze velocity. Case (b) shows numerical results for which
the squeeze number ¢ is large. It is seen that in this case, the phase between the force and the
clearance is nearly zero, which indicates that the force is proportional the squeeze clearance.

2.6.4. Case of a freely floating upper mass

When the mass is free to float with no constraints, the mean clearance cannot be prescribed as
was done in the former case. The mean gap is determined by the dynamics of the system with the
coupling effects involved. It turns out that in such case, the squeeze number ¢ is no longer a
physical indicator for the squeeze-film’s behaviour.

An examination of the behaviour of the air film for the case of a floating mass reveals that the
behaviour is no longer the same as was for the case of prescribed mean gap. Figs. 7(a) and (b)
show the phase between the force exerted by the squeeze film and the displacement of different
points on the vibrating surface as a function of the excitation frequency. It can be noticed that in
much of the excitation frequency range, the phase between the force exerted by the squeeze film
and the displacement of the vibrating surface (in our case, points on the upper surface of
the piezoelectric disc), is ether +180° or zero. This behaviour indicates that at these frequencies,
the squeeze film acts as a non-linear spring without a dissipative mechanism. Fig. 7(c) shows the
clearance between the discs as function of the excitation frequency. We can observe that the

0.8 - 08
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(a) Time (b) Time

Fig. 6. Numerical results (normalized) of the force (F) exerted by the film and the periodic variation of the clearance
(C) for a case where the upper mass is fixed in space: (a) small squeeze number: ¢ = 10; (b) large squeeze number:
g = 1000.
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Fig. 7. The phase between the force exerted by the squeeze film and the displacement of (a) the centre point and (b) the
edge point on the vibrating surface as a function of the excitation frequency; (c) the absolute value [m] of the clearance
between the discs as a function of frequency.

changes in the phase (Figs. 7(a) and (b)) occur near the resonance frequencies of the complete
system (3500, 8800, 23,500 Hz) where the clearance increases. Furthermore, as expected, the
differences in synchronization between the phases for the different points on the vibrating
surface are related to the piezoelectric mode shapes. This can be easily seen near the first
resonance frequency (3500 Hz) where the edge point is in anti-phase to the centre point as should
be according to corresponding mode shape. It is interesting to note that the transition to a
damper-like behaviour starts at regions where the amplification is largest (resonance).

The former conclusions about the behaviour of the system for the case where the mass is free to
float are insufficient. When plotting the clearance between the discs as function of time for
different initial gaps, one sees that at any chosen excitation frequency, the mass displacement
relative to the piezoelectric disc is strongly damped, reaching the equilibrium gap with almost no
overshot. While reaching this equilibrium, the mass keeps vibrating at the excitation frequency
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Fig. 8. Numerical simulation of the clearance vs. time for three different excitation frequencies: (a) 3500 Hz, (b)
8800 Hz, (c) 23500 Hz.

with small amplitudes relative to the clearance. Fig. 8 shows numerical simulation of the clearance
versus time as the system is electrically excited at the first three resonant frequencies. In all
simulations, the floating mass vibrates, has a superimposed fine motion at the excitation frequency
(see enlargement in Fig. 8). Such behaviour may suggest that the squeeze film acts as a non-linear
spring (this is expected due to the compressibility effects of air and from the mathematical
representation by Reynolds’s equation).

To summarize the analysis of the numerical results, it can stated that: (1) the non-linear spring
action of the squeeze film is related to the variations in the clearance between the discs. (2) When
large variations in the clearance take place, the stiffness of the squeeze film is relatively low,
allowing for the damping mechanism of the viscous flow to become dominant, while (3) at
relatively small clearance variations, the stiffness of the squeeze film increases dramatically,
consequently making the squeeze damping insignificant. (4) The damping factor decreases as the
mean clearance increases.

3. Experiments, design and comparison

In this section, the importance of coupled analysis is emphasized by introducing an
experimental investigation of the dynamical behaviour while conducting a comparison with the
numerical simulation results. From this comparison, the limitations of state-of-the-art modelling
procedures are clarified. There have been several design considerations in the construction of the
experimental model concerning the layout of a piezoelectric stack of discs and an exponential
horn for amplifying the system’s vibrations. These design enhancements allowed the squeeze film
phenomenon to take place and carry a reasonable load during the laboratory measurements. The
comparison of the simulated results with the measurements shed more light on the true physical
behaviour of the device.



A. Minikes, I. Bucher | Journal of Sound and Vibration 263 (2003) 241-268 255

3.1. Description of the experimental and measurement system

This numerical model shown in Fig. 1 is oversimplified when trying to design a working system
according to commonly used lumped parameter models. As the piezoelectric material could
withstand a limited voltage, the deformations in the piezoelectric disc are insufficient to produce
an air squeeze film. Reducing the disc’s thickness dramatically or clamping the disc close to its
nodal diameter, does not provide a sufficient solution as new problems arise such as static
deflections and manufacturing difficulties.

The modified system consists of four piezoelectric discs arranged in a stack formation with
electrodes between them and opposite polarization in the thickness direction. The stack is clamped
to a large base at the bottom end and on the top base an exponential horn, made of steel, is
attached. To the small diameter of the horn, a thin disc made of aluminium was attached. These
modifications, which are deigned to increase the vibration amplitudes of the aluminium disc, are
discussed later. Fig. 9 illustrates the schematic layout and a photograph of the experimental
system. The dimensions and materials of the system are detailed in Table 2.

3.1.1. Experimental system design considerations

When designing a piezoelectric transducer, it is desirable to achieve the largest possible
displacements. Therefore, the transducer is composed of discs arranged in a concentric stack with
electrodes between the discs. As in a parallel plate capacitor, in such an assembly, the electric field
on each disc is stronger in comparison to a single disc having a thickness equal to the total stack
thickness.

As long as the applied voltage is in the linear range of the piezoelectric material, the
deformations are proportional to the applied voltage. Therefore by arranging the polarity of the
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Fig. 9. Schematic layout and a photograph of the experimental system.
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Table 2

The dimensions and materials of the system

Component A. Material Parameter Dimension (mm)

Piezoelectric discs PZT-5A Diameter thickness 50

10

Electrodes Copper Diameter 50
Thickness 1

Exponential horn Steel Large diameter 50
Small diameter 5
Length 160

Thin disc Aluminium Diameter 60
Thickness 3

Floating disc Aluminium Diameter 60

discs intermittently in opposite directions, the deformations accumulate, producing larger relative
displacements between the tips of the stack.

When a piezoelectric transducer is excited by electrical voltage, there are limitations on the
amount of obtainable mechanical power. The voltage amplifier limits the mechanical power that
can be obtained, and so does the breakdown voltage of the piezoelectric medium. A third factor is
the temperature rise that the piezoelectric medium can withstand without changing its properties.

Under vibrating conditions, a mechanical amplifier shaped as a horn (see Fig. 9) and connected
to the piezoelectric stack can increase the strain or the motion to a sufficient amount. The horn is
in effect a half-wave transformer that tapers from a large diameter on the transducer end to a
small diameter on the load end [9]. This transformer increases the local velocity by the ratio of the
large diameter to the small diameter of the transforming horn.

In order to verify and compare the experimental results to the numerical ones, the numerical
model must be modified so that the dynamical behaviour of the complex piezoelectric actuator
could be simulated. Therefore, the finite element model was modified to be able to combine the
various components of the actuator. A useful and convenient way to model a complex system is
by sub-dividing the system into a group of smaller and simpler problems, solving each problem
separately and then regrouping the system’s components under the appropriate constrains. Such
an approach is made possible by a transformation, which allows only motions that do not
perform any work on the immovable constraints (see Appendix C). In this work, this
transformation was performed in order to combine the stack of piezoelectric discs together with
the exponential horn and the thin disc.

3.1.2. The measurement system
The configuration of the measurement system consisted of a laser sensor allowing one to
measure displacements and velocities normal to the laser beam. Two mirrors providing two d.o.f.
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Fig. 10. Schematic layout of the measurement equipment.

control the beam’s position, allowing one to scan flat surfaces. Fig. 10 shows a schematic layout of
the measurement equipment. The frequency response functions were found by curve fitting the
laser’s measurement signals. Measuring points on the thin disc according to a polar grid and
plotting the displacement amplitude of each co-ordinate synchronized with its relative phase
produce the operating mode shapes (as shown later in Section 3.2.2).

3.2. Comparison of experimental and numerical results

In this section, the dynamical behaviour of the numerical model and the experimental system
are compared under various excitation patterns.

3.2.1. Frequency response function

At this stage, the system components that are: the piezoelectric stack, the exponential horn and
the thin disc, are all connected with the relevant constraints. The first step before examining the
system’s dynamics is to verify the numerical algorithm by comparing the simulated results to
measured results. Fig. 11 shows the amplitude of the displacement at the centre point on the upper
surface of the thin disc as a function of frequency. This figure includes the numerical results
calculated by the finite elements model together with the measurement results. In addition, a plot
of the numerical results done by commercial software—Ansys5.6, is superimposed.

As seen from Fig. 11, a relatively good agreement was achieved. The difference in the results is
due to several possible causes. In the numerical model, an assumption of perfect and aligned
connection of the system’s components was made. In practice, due to design constraints, such
ideal connections are not obtained. Therefore in the experimental model, the stack consists of
discs with a small hole in the centre through which a screw passes to fasten together the stack and
the horn. Such constraints cause variation in the stiffness and damping of the system and render
the assembly to be slightly asymmetric.
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3.2.2. Mode shapes

A natural step towards verifying the numerical results was taken by measuring the mode shapes
of the system and comparing them with the mode shapes that were obtained by the numerical
simulation.

The measurements of the mode shape were performed by measuring points on the thin disc
according to a polar grid with a division of 8 circles and 30 sections starting at an initial radius.
The mode shapes are found by plotting the displacement amplitude of each co-ordinate on the
polar grid synchronized with its phase. Fig. 12 shows the plots of the measured data and the
corresponding plots of the numerical results. One can see that the finite element analysis predicts
nearly identical mode shapes to the measured ones. The computed plots in Fig. 12 show only a
part of the model, which mostly influence the squeeze film. But the numerical model incorporates
the prediction of the entire structure described in Fig. 9.

3.2.3. The dynamics of the floating mass
In this section, the focus is on the dynamics of the floating mass and in particular, comparison
between the transient behaviour and the steady state gap under several loading conditions.
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Fig. 11. The frequency response function of the displacement of centre point on the upper surface of the thin disc: (a)
measurement; (b) finite element model; (c) Ansys 5.6.
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Fig. 12. Measured and numerical results of two mode shapes of the thin disc connected to the horn’s tip.
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3.2.3.1. Mean clearance at equilibrium—a comparison. The most valuable part of the experiments
consists of measuring the dynamical behaviour of the floating mass. In this part of the
measurements, the laser sensor beam was located above and normal to floating mass (see Fig. 10),
allowing one to measure displacements and velocities of the floating mass. Waiting a sufficient
amount of time, the squeeze film reaches a steady-state equilibrium in the axial direction, but in
the radial direction the equilibrium is unstable, so that any minor asymmetric imperfection in the
model causes the mass to slip sideways. To prevent the sideways motion, a thin cotton cord was
stretched parallel to the disc’s surface, connecting the centre of the mass to a fixed support. The
cord’s weight is negligible in comparison to the weight of the floating disc and by such a set-up,
the cord applies tension force only in the radial direction without applying any moment. Once the
mass was floated, the direction of the cord’s pulling force was set opposite to the sliding direction,
preventing it from slipping sideway. In this way, one could keep the floating disc in a concentric
line with the transducer with minimal interference.

A measurement of the mean clearance between the transducer and the floating mass once the
system achieved equilibrium was performed. The mean clearance steady state was found by
measuring the displacement of the floating disc while turning the excitation voltage off. Figs. 13(a)
and (c) show the measured results of the described experiment while Figs. 13(b) and (d) present
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Fig. 13. Mean clearance at equilibrium between the floating disc and the transducer. Experimental results—a floating
mass of: (a) 50g, (c) 20 g. Numerical simulation—a floating mass of: (b) 50 g, (d) 20 g.
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Table 3

Parameters of the numerical and experimental system

Excitation voltage (amplitude) 180V
Excitation frequency 15kHz
Floating mass 50,20¢g

the numerical simulation of the clearance starting form an initial gap of 120 um. The parameters
of the numerical model and the experimental model are given in Table 3.

According to the numerical simulation, equilibrium is achieved at a mean clearance of 69 um
for a mass of 50 g and 84 um for a mass of 20 g. The experimental results show that the mean
clearance is only 26 um for a 50 g mass and 50 um for a 20 g mass. For systems with a similar level
of complexity to the one being dealt with here, there is a high probability to obtain some
imperfections in the design and the manufacturing of the experimental rig. Under these
constraints, the agreement that has been observed here between the numerical and experimental
results is considered to be satisfactory. The simulated and measured results had a similar
magnitude, and the mean clearance (in a floating state) is only about twice the measured clearance
in the model. Besides the design and manufacturing limitations of the experimental model, which
were discussed earlier, a possible explanation for this deviation between the results is due to the
assumption that floating disc is completely rigid. In practice, the floating disc did experience some
vibrations at the electrically applied frequency (see Section 3.2.3.3 below). Such vibrations absorb
some of the energy conveyed by the squeeze film forces, resulting in a smaller clearance at
equilibrium.

3.2.3.2. The response to external interference. Measurements for comparing the actual system’s
response to the external interference to the numerically simulated ones were conducted. For the
sake of simplicity, we chose to create a sudden change in the weight of the floating disc
by removing an added mass initially resting on the floating disc. Once equilibrium was achieved,
the mass that was initially placed on the floating disc was quickly removed. The removal of a
known mass can be accurately modelled numerically unlike impact forces, which require
additional calibration. Such a calibration would require additional measurements at the interface
between the impacting force and the floating disc, which may prove very difficult to perform. The
initial floating mass was 50 g and the removed mass part was 30g (there remaining a floating
weight of 20 g).

The experimental measurements are presented in Fig. 14(a). The mass removal rate was
modelled as an exponential change in the mass having that was performed with a time constant of
several milliseconds. Fig. 14(b) shows the numerical simulations of the system’s behaviour to such
a reduction in the floating mass.

As can be observed, the system response in the numerical simulation is similar to the measured
behaviour. The duration of the transient time that was observed in the simulation is in the same
order of magnitude as in measured results. In the numerical simulation, the change in the mean
clearance once the floating mass has been reduced is around 15pum while the measured results
indicate a difference of only 26 um. We can observe that repeatability in the experimental
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measurements as the difference in the clearance between Figs. 13(a) and (c¢) is 24 um and is equal
to the change in the clearance once the mass was reduced from 50 to 20 g (which is 26 um as seen
in Fig. 14(a)). Both Figs. 14(a) and (b) show that the floating mass displacement relative to the
thin vibrating disc is strongly damped, reaching the equilibrium gap with almost no overshot. The
low frequency vibrations appearing in the experimental measurement are caused as a result of
manually removing the mass from the floating disc; therefore, removing the mass generated lateral
vibrations of the floating disc. While reaching this equilibrium, the mass keeps vibrating at the
excitation frequency (15kHz) with small amplitudes relative to the clearance. This non-linear
spring action of the squeeze film is related to the variations in the clearance between the discs, and
is correlated to the numerical dynamic examination of the system as discussed earlier.

3.2.3.3. Vibration amplitudes of the floating disc. Finally we tried to perform a comparison
between the numerical and experimental results of the vibrating amplitudes of the floating disc
once it reaches the mean clearance equilibrium. In this stage, a difficulty was encountered in the
comparison. The numerical algorithm assumes that the floating disc is completely stiff acting as a
rigid body with no dynamic deflections. But when measuring the operating mode of the floating
disc, it was discovered that the disc deforms at the frequency of excitation with a deformation
pattern as shown in Fig. 15. This operating mode is asymmetric having one nodal line. If the
experimental model was indeed perfectly axisymmetric, such an operating shape is not expected to

30
84+
25F 82} ‘
20l 801
b B 78t
E 15 £
o o 7O 15[um]
(%] Q
E 10} E T4
72F
i | 70}
v 4
0 1 681
1 1 I L 1 66 L L L 1 1 1
0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.15 0.2 0.25 0.3
(a) sec (b) sec

Fig. 14. Change in the mean clearance as a result of a sudden reduction of floating weight from 50 to 20g: (a)
experimental results—mean clearance change: 26 pum; (b) numerical simulation—mean clearance change: 15 pm.

Fig. 15. Measured operating mode of the floating disc at steady state.
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Fig. 16. Numerical simulations of the vibrating amplitudes of the floating disc at equilibrium for two different weights:
(A) 20g and (B) 30¢g.

be excited. These findings emphasize the imperfections in the model and the related affects as was
mentioned earlier. As the floating disc is evidently not rigid, the comparison of the amplitudes at
some points on the floating disc, to the amplitudes of the floating mass in the numerical algorithm
can only give a qualitative indication for the agreement. More accurate conclusions require a
more elaborate numerical model.

Once equilibrium is achieved, according to the numerical simulations, as the mass of the
floating disc increases, the vibration amplitudes of the floating mass at excitation frequency
decrease, and vice versa. Fig. 16 shows the numerical amplitudes of two different levitated weights
at equilibrium. The amplitude of a 30 g mass is near 40 nm (40 x 10~° m) while the amplitude of a
20g mass is near 60nm. This behaviour was also observed in the measurements of the
experimental model. Measurements on a 20 g floating disc revealed an average amplitude of
100 nm while measurements on a 30 g floating revealed average amplitudes of only 45 nm.

A better comparison between the numerical and experimental behaviour of the floating disc
requires that the floating disc be modelled as a flexible structure instead of treating it as rigid body.
This of course increases the level of complexity of the numerical model and consumes more
calculation power. Still, under the current assumptions, the small vibration of the floating mass did
not affect the average floating levels considerably (that were several orders of magnitude larger).

4. Discussion and conclusions

In conclusion, the coupled analysis contradicts earlier findings, which assume that the operating
regime of the squeeze film can be divided into spring and damper regions controlled by the
frequency of excitation or the squeeze number. Indeed, it is evident that the observed behaviour is
more complex and has alternating regions of spring and damper that strongly depend on the
mechanical structure and the combined behaviour. Different behaviour is observed for different
frequencies and for different displacement scales. The numerical results emphasize the influence of
the dynamic coupling effects on the individual components and the importance of these effects on
the performance of the complete system.
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The agreement between the numerical simulation results and the experimental measurements
that have been obtained are quite satisfactory. Such an agreement has been achieved with the
inclusion of the coupling effects that were considered in the numerical model. The comparable
results of the numerical model and the experimental model sustain the correctness of the
numerical simulation. In practice we have managed to levitate discs with a weight of over 0.5kg,
but the measurements were performed with lighter weights for convenience, as for lighter weights,
the variations in clearance are larger.

The observed deviations between the numerical and experimental results’ inaccuracy seem to be
due to an accumulation of uncertainties in the system’s behaviour, and due to some inevitable
numerical-modelling assumptions. It was therefore, important to conduct a series of laboratory
experiments in order to investigate the dynamical behaviour and to assess how well the numerical
model represents the true behaviour. Such inaccuracies have been seen when comparing the
numerical frequency response function of the electromechanical transducer to the laboratory
experiments.

The mean clearance between the floating mass and the transducer was measured, indicating that
the mean clearance is in the range of several tens of micrometers. The system’s behaviour to an
external interference was investigated, sustaining the non-linear spring action behaviour of the
squeeze film and the large damping. Yet, while performing measurements on the experimental
model, an unexpected behaviour was encountered that could not be revealed by the numerical
model. It appears that the floating disc, in the present case, could not be assumed rigid, as we have
observed an asymmetrical flexible operating mode of the disc while floating. A future investigation
may focus on the combined dynamical behaviour, which incorporates a flexible floating disc.
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Appendix A. Verifying the numeric algorithm

In order to verify the solver for a non-linear problem in space and time, the compressible
Reynolds equation was solved for a particular case where one expects its solution to be identical
to the solution of the Blasius problem in the von Mises co-ordinates.

The latter is treated as the following:

For a two-dimensional steady flow over a plate with zero pressure gradient, the governing
equations of motion in the boundary layer (the Blasius problem) are [11]

ou Ov
x oy

ou oV u
ua—l— 05: Ua—y2

0,

(A.1)
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with the boundary conditions

u(y =0)=0,
u(y = o) = U,. (A.2)
The stream function y is introduced as usual by
oW o
u= o b=
The von Mises transformation with the co-ordinates £ = x and n = , reduce Eq. (A.1) to [11]
with the boundary conditions
u(y =0) =0,
uy = 0)=U, =1 (U, =1 and v =1 for simplicity). (A4)
It is well known that the Blasius problem has a self-similar solution
V= /X (),
u=f(n), (A.5)

where # = y/\/} and the functions 1, f” are tabulated in Ref. [11].

This solution can be presented with the von Mises transformation as u = F(i// \/E). Problem
(A.3) and (A.4) is a particular hypothetical case of the compressible Reynolds equation in
Cartesian co-ordinates for a constant uniform gap. Therefore, for the sake of comparison, one
could treat u in Egs. (A.3) and (A.4) as the pressure P in the Reynold’s equation. Self-similarity

f=psi/sqrt (xi)

Fig. A.1. Numerical simulating results for several particular values of &.
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means that a solution of problem (A.3) with any arbitrary “initial”” condition, which satisfies the
boundary conditions, such as

uE=0=1-—e" (A.6)

should converge to the self-similar form u = F(y// \/E) as {— oo and moreover, the function F
could be reconstructed from Blasius solution by /" = F(f).

The results of the numerical simulating, using the code, are plotted in Fig. A.1 for several
particular values of £. It is clearly seen that the curves converge to a limiting curve beginning from
E=0.0124...&%, and this curve (marked by crosses) is indeed identical to the results of Blasius
problem.

It is obvious that a similar convergence should be achieved for any other initial condition
replacing that of Eq. (A.6); only the “convergence time” &* would change. The Blasius solution is
regarding a boundary layer away from the front edge of the plate, where the edge effects do not
influence the flow profile. This explains why the numeric solution converges as ¢ increases.
Imposing the arbitrary initial condition actually describes the flow profile on the plate’s front
edge.

Appendix B. Finite elements verification

Verification of the finite elements algorithm for an axisymmetric piezoelectric structure was
made by comparing to the results obtained by Guo et al. [2] and the results obtained by Heyliger
et al. [10] for a piezoelectric disc made of PZT-5A with polarization in the axial direction and the
electrodes are on the upper and lower bases of the disc. The natural frequencies were found by
solving the eigenvalue problem for the short-circuit case given by Eq. (12). The disc’s dimensions
are 19.96 mm in diameter and 2.01 mm in thickness. In the work by Gou et al. [3] and that by
Heyliger and Ramirez [10], a 2 x 48 mesh of eight-node quadrilateral axisymmetric piezoelectric
elements was used. In this work, the piezoelectric disc has been modelled by four-node
quadrilateral axisymmetric piezoelectric elements. Therefore a mesh of 4 x 96 has been used.
Finer meshes were also used, and it was found that the accuracy was not significantly improved
while the cost of computing increased drastically.

There is an excellent agreement between the results as can be seen in Table B.1 which shows a
comparison between the results obtained by Gau et al. [3], Heyliger and Ramiren [10] and this
work for the first five symmetric modes frequencies.

Table B.1

Symmetric mode frequencies (kHz) of traction-free PZT-5A disc

Mode Guo [6] Heyliger [7] F.E.M. Rel Diff Guo (%) Rel Diff Heyliger (%)
1 99.21 99.22 99.2135 0.0035 —0.0066

2 252.4 252.38 252.4801 0.0317 0.0397

3 384.8 383.88 385.1991 0.1037 0.3436

4 493.2 497.38 494.4846 0.2605 —0.5821

5 572.2 577.59 578.1011 1.0313 0.0884
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Fig. B.1. Frequency response function of the centre point of the piezoelectric disc derived by Mode superposition
analysis with 0.013 damping factor.

The mechanical frequency response functions in the axial direction of the centre of the surface
when voltage excitation is applied, is shown in Fig. B.1. Structural damping, which is
proportional to the stiffness, of a factor of 0.013 was introduced in the frequency response
function. At relatively low frequencies, there is an excellent agreement, which is slowly
deteriorating as the frequency increases. The accuracy of the FRF is determined by the number of
modes taken into consideration in the mode superposition method. The peaks seen in Fig. B.1 are
at resonance frequencies of the extensional mechanical modes as explained in Section 2.3.1.

Appendix C. Numerical assembly of the transducer sub-components

A useful and convenient way to model a complex system is by sub-dividing the system into a
group of smaller and simpler problems, solving each problem separately and then regrouping the
system’s components under the appropriate constrains. Such an approach is made possible by a
transformation, which allows only motions that do not perform any work on the immovable
constraints. In this work, this transformation was performed in order to combine the stack of
piezoelectric discs together with the exponential horn and the thin disc. The advantage of such an
assembly is the ability to mesh relatively simple geometries separately. As the meshing has a
significant effect on the convergence and accuracy of the finite elements model, such ability is
important.

Let q4, qz be the vectors containing the d.o.f. of parts A and B, respectively. The interface
d.o.f., which are the d.o.f. sheared by both parts, are subsets of vectors q,, qz. Therefore one can
write the interface d.o.f. q;, q, as

q, = [Sil{q.}, @ =[S:20{q,}. (C.1)
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where

are selection matrices extracting the desired d.o.f. from the total vector of d.o.f.

By designating Q,,Q, as the forces acting on the interface between parts A and B, and by
assigning Q 4, Qp as the total forces (not including the interface forces) acting on parts A and B,
respectively, the total virtual work done on the two parts may be written as

oW = Q,0q, + Q;0q;, + Q,6q; + 0>3q,. (C2)

By definition, the sum of the virtual work done by the interface forces is zero; therefore
Q,9q; + Q,8q, = 0. Making use of Newton’s third law, one gets

oq,
[S1, —S2] =0. (C3)

dqy,
This expression indicates that any virtual displacements of the general d.o.f. (not including the
interface d.o.f.) are in space spanned by the kernel of the matrix [S;, —S,]. The uncoupled

dynamic equations of the parts A and B may be written in a matrix form as

Mfl 0 iia qa qa Qa
= , C4
0 Mb]{ﬁb}+ {flb} {‘lb} {Qb} (€4

where M, C, K are the mass, damping, and stiffness matrices, respectively.
Applying the transformation
q
{ a} = [T]{a}
qp

where [T] = Span(Ker[S;, —S,]) is the subspace generated (spanned) by the vectors forming the
null space (kernel) of the matrix [S;, —S;]and {a} is a generalized co-ordinates vector; together
with pre-multiplying by [T]', the uncoupled dynamic equations are transformed to a set of
coupled equation:

C, 0
0 G

K, 0
0 K,

[M]{d} + [Cl{a} + [K]{a} = [T]T{ g: } (C.5)

where [M], [C], [K] are the mass, damping, and stiffness matrices after transformation |,
respectively.

Solving the transformed Eq.(C.5) and reversing the transformation, produces the d.o.f.
solutions for each separated part under the bounding constraints.
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